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ABSTRACT

The COVID-19 pandemic, which has already claimed millions of lives, continues to pose a serious
threat to human health, requiring the development of new effective drugs. Non-structural proteins of
SARS-CoV-2 play an important role in viral replication and infection. Among them, NSP16 (non-struc-
tured protein 16) and its cofactor NSP10 (non-structured protein 10) perform C2'-O methylation at the
5" end of the viral RNA, which promotes efficient virus replication. Therefore, the NSP16-NSP10 com-
plex becomes an attractive target for drug development. Using a multi-step virtual screening protocol
which includes Lipinski’s rule, docking, steered molecular dynamics and umbrella sampling, we
searched for potential inhibitors from the PubChem and anti-HIV databases. It has been shown that
CID 135566620 compound from PubChem is the best candidate with an inhibition constant in the
sub-uM range. The Van der Waals interaction was found to be more important than the electrostatic
interaction in the binding affinity of this compound to NSP16-NSP10. Further in vitro and in vivo stud-

ARTICLE HISTORY
Received 11 May 2022
Accepted 14 August 2022

KEY WORDS

Virtual screening; SARS-CoV;
COVID-19; SARS-CoV-2
(nCoV); umbrella sampling;
NSP16-NSP10; COVID-19

ies are needed to test the activity of the identified compound against COVID-19.

1. Introduction

Over the past two decades, betacoronaviruses have triggered
two epidemics, namely the severe acute respiratory syn-
drome coronavirus (SARS-CoV) and the Middle East respira-
tory syndrome coronavirus (MERS-CoV) (Skowronski et al.,
2005). In 2019, an outbreak of a new coronavirus in Wuhan,
China, turned into a global pandemic called COVID-19
(World Health Organization, 2020), which has claimed more
than 5.2 million lives worldwide. Based on genetic analysis,
this new virus has been named SARS-CoV-2 due to its close
relationship with SARS-CoV (Coronaviridae Study Group of
the International Committee on Taxonomy of 2020), which
caused the SARS epidemic in 2002.

To combat COVID-19 one can use vaccines, antibodies
and drugs. Currently, Pfizer, Moderna, AstraZeneca and other
vaccines are widely used, but their side effects have not
been fully studied and understood. Antibodies extracted
from the plasma of recovered SARS-CoV-2 patients have
valuable therapeutic effect (Jiang et al., 2020), but their
quantity is small and quite expensive. Of the drugs available
on the market, Remdesivir (Wang et al, 2020) and
Dexamethasone (Group et al,, 2021) have been found to be
effective for critically ill patients, but their immune systems
may get weaken (Khamsi, 2021). Molnupiravir (EIDD-2801/
MK-4482), developed by Merck, is not FDA-approved, but it
can reduce the risk of hospitalization or death in unvaccin-
ated adults with COVID-19 (Jayk Bernal et al., 2022). Pfizer's

Paxlovid is the first drug approved by FDA for oral treatment
for COVID-19 (Drozdzal et al., 2021), but like Molnuparivir, its
ability to cope with emerging variants of concern such as
Omicron (WHO, 2021) is under investigation. Thus, due to
the limited number of drugs and drug candidates and an
increasing number of variants of concern, the development
of new drugs remains a challenge.

The human coronavirus genome encodes multiple struc-
tured proteins including spike (S), envelope (E), membrane
(M), and nucleocapsid (N) proteins. It also contains non-struc-
tural proteins (NSPs) called NSP1 to NSP16 (Kim et al., 2020)
(Figure 1). These proteins play a vital role in SARS-CoV-2 viral
life cycle and emerge as promising targets for drug design
studies (Arya et al., 2021; Huang et al., 2020; Nallagatla et al.,
2008). Among them, the papain-like protease (PL"*°) (NSP3)
and the main protease (M”"°) (NSP5), which play a crucial
role in the regulation of various viral replication functions,
have been intensively studies as drug targets (Jimenez-
Alberto et al, 2020; Ma et al., 2021; Owen et al., 2021;
Tripathi et al.,, 2020). Other studied targets are NSP12 (Elfiky
2021; Ruan et al, 2021), NSP13 (Perez-Lemus et al., 2022;
White et al., 2020), NSP14 (Selvaraj et al, 2021), NSP15
(Sharma et al., 2022), NSP16 (El Hassab, Ibrahim, Al-Rashood,
et al, 2021; El Hassab, lbrahim; Shoun, et al., 2021; Jiang
et al, 2022; Liang et al,, 2021), spike (Kadioglu et al., 2021),
nucleocapsid (Hu et al, 2021; Yadav et al, 2021), and
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Figure 1. (Upper) Schematic description of SARS-CoV-2 RNA. (Lower) Structure of NSP16-NSP10 in complex with SAM molecule (PDB ID 6W4H).

envelope (Bhowmik et al., 2020; Orfali et al., 2021) proteins
of SARS-COV-2.

Coronavirus methyltransferases (MTases), nsp10/16 and
nsp14, are SARS-CoV-2 enzymes that are crucial for RNA cap
formation, an important process for viral RNA stability
(Nencka et al., 2022). This function of MTase is tied to NSP16,
which requires NSP10 as a cofactor to work properly (Bouvet
et al, 2010; Kozielski et al., 2022; Krafcikova et al., 2020).
Thus, the NSP16-NSP10 heterodimer becomes a potential tar-
get for antiviral therapy.

Through in silico screening Malik et al. (2021) found several
potential inhibitors for NSP16-NSP10 5 methyl transferase
activity from 128 phytocompounds and 11 FDA-approved HIV
drugs. Maurya et al. (2020) performed a virtual screening of
anti-viral, anti-infectious, and anti-protease compounds and
found that telbivudine, oxytetracycline dihydrate, methylgal-
late, 2-deoxyglucose and daphnetin are the compounds that
best bind to NSP10/NSP16 methyltransferase. Several inhibi-
tors including those derived from SAH (S-adenosyl-.-homo-
cysteine) were reported for this target (Bobileva et al., 2021;
Nencka, et al. 2022). Applying a pharmacophore modelling-
based drug repurposing approache to the DrugBank database,
several compounds (framycetin, kanamycin, tegobuvir, sonide-
gib, siramesine, antrafenine, and tobramycin) have been found
as promising candidates for COVID-19 therapeutics (Encinar &
Menendez, 2020; Rampogu & Lee, 2021). However, drug candi-
dates inhibiting SARS-COV-2 NSP16-N10 activity have not
been identified from large databases. Therefore, here we
attempted to search for potential inhibitors of this target from
two large databases PubChem and anti-HIV using a multi-
stage virtual screening (Figure 2).

NSP16-NSP10 structure deposited in the Protein Data
Bank (PDB) was used as a drug target. A further reduction in
the number of compounds was achieved by Lipinski's rule,
molecular docking followed by steered molecular dynamics

(SMD) simulation (Thai et al., 2017). Finally, we performed
umbrella sampling to estimate the binding free energy for
the top two SMD-derived compounds from the two data-
bases. This analysis indicated that PubChem’s compound CID
135566620 is a good candidate for the treatment of COVID-
19 as it has an inhibition constant IC50 in the sub-uM range.

2. Materials and methods
2.1. Target and ligands

The target is a complex of NSP16 and NSP10 and its struc-
ture was retrieved from PDB with the code 6W4H (Rosas-
Lemus et al., 2020) (Figure 1). The binding site of this struc-
ture is known and coincides with the location of SAM (S-
adenosyl methionine). Residues of NSP16 and NSP10 were
renumbered, residue 1 of NSP16 in this work is 6799 from
6W4H, and residue 1 of NSP10 is 4271 from 6WA4H.

The ligand structures were downloaded from two data-
bases: PubChem database (Bolton et al., 2008) which com-
prises about 103 million compounds (Figure 2) and anti-HIV
database of National Cancer Institute (NIAID Division of AIDS
Anti-HIV/OI/TB Therapeutics Database, 2022) with 42,390 com-
pounds collected in the ‘AIDO99SD.BIN’ file (Gasteiger, 2004).

2.2. Lipinski’s rule

The first step in virtual screening is to apply Lipinski’s rule of
five (Lipinski et al, 1997) to obtain ligands with drug-like
properties (Lipinski et al., 1997, 2012). According to this rule,
a drug candidate should have a molecular weight from 0 to
500Da, xlogP from 0 to 5, the number of donor hydrogen
bonds from 0 to 5, and the number of acceptor hydrogen
bonds from 0 to 10.



2.3. Docking simulation

Autodock Tool 1.5.4 (Morris et al., 2009; Sanner, 1999) in the
package of MGL Tools-1.5.4 was used to convert the input PDB
file to the PDBAQT file format for docking a ligand to the target.
The initial structures and parameters of the ligand and target
for docking simulations were prepared using python scripts
‘prepare_receptord.py’ and ‘prepare_ligand4.py’ plugined in
Autodock Tool 1.5.4. Docking simulations were performed
using Autodock Vina version 1.1.2 (Trott & Olson, 2010). For
global search, the exhaustiveness parameter was set to 400,
which is sufficient to obtain reliable results. The binding site of
NSP16-NSP10 was known from experiment with the SAM
(S-adenosyl methionine) ligand (Rosas-Lemus, et al. 2020)
(Figure 1). To envelop just the binding site, a box with grid
dimensions 20 x 22 x 22 A was chosen. In docking simulations,
the receptor dynamics was neglected, and the best docking
mode with the lowest docking energy was selected.

To show that skipping receptor dynamics is acceptable,
we ran docking simulations for 3 compounds from PubChem
and 2 compounds from the HIV database where binding site
residues are flexible and compare with the case of a rigid
receptor. The binding energies in both cases are almost
equal, but taking into account the receptor dynamics
increases the simulation time by about 12-19 times (supple-
mentary material Table S1). This result supports our choice
to forego the flexibility of the receptor.

2.4. Molecular dynamics simulation

Molecular dynamics simulation was performed using the
GROMACS 2020.2 package (Abraham et al., 2015) with an
AMBER-f99SB-ILDN (Lindorff-Larsen et al., 2010) force field
and TIP3P water model (Jorgensen et al, 1983). Note that
the TIP3P water model is compatible with this force field
(Lindorff-Larsen et al., 2010; Jorgensen et al., 1983) and has
been successfully used in many previous works on protein-
ligand association (Huy et al.,, 2014; Viet et al.,, 2015; Vuong
et al, 2015; Zhang et al., 2021).

Force field parameters for ligands were calculated using
Antechamber (Wang et al., 2001) and Acpype (Sousa da Silva
& Vranken, 2012) derived from the General Amber Force
Field (GAFF) (Wang et al., 2004). To obtain the point charge
of atoms, a simple harmonic function form for bonds, angles
and the AM1-BCC (Jakalian et al., 2000) charge model
were used.

Complex systems were solvated in boxes filled with water
molecules. Na®™ and CI" ions were added to neutralize the
system and achieve an salt concentration of 0.15M (Ali &
Vijayan, 2020). Solvated systems contain about 130,000
atoms, of which about 41,600 are water molecules. The Van
der Waals (vdW) force was calculated with a cut-off of
1.2nm, while the particle-mesh Ewald summation method
(Darden et al., 1993) was employed for calculating the elec-
trostatic energy with the same cut-off as vdW. To solve the
motion equation, a leapfrog algorithm (Hockney et al., 1974)
with a time step of 0.2 fs was used.
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Figure 2. Multi-step screening procedure. Out of approximately 103 million

(103M) compounds of PubChem and 42,390 compounds of anti-HIV, we

obtained 16,141 and 34,828 drug-like compounds after application of Lipinski’s

rule. Molecular docking, SMD and umbrella sampling were then used to identify

the top compounds.

After energy minimization by the steepest descent
method (Bartholomew-Biggs, 2005) and water molecules
have entered the binding site, the system was equilibrated
with position restraints on heavy atoms using a harmonic
potential with a spring stiffness of 1000 kJ/(mol.nm?) in NVT
and NPT ensembles for MD simulations of 500 ps and 5ns,
respectively. Then, 50ns conventional MD simulation was
carried out for each system in NPT ensemble without
restraints. The last snapshot obtained in this run will be used
as the initial configuration for the SMD simulation. The v-
rescale (Bussi et al.,, 2007) and Parrinello and Rahman (1981)
algorithms were used to maintain temperature and pressure
at 300K and 1atm during simulation, respectively.

2.5. SMD simulation

SMD can be employed to probe binding affinity by pulling a
ligand out of a receptor binding site (Grubmuller et al,
1996). It has been recognized that SMD method is as accur-
ate as the MM-PBSA method but computationally much
faster due to fast pulling (Mai & Li, 2011; Suan Li & Khanh
Mai, 2012; Vuong et al., 2015). Because the predictive power
of the docking method is limited, the SMD is used to refine
docking results in virtual screening as the next step in the
multi-step screening procedure (Thai et al., 2017) (Figure 2).

In SMD, an external force is applied to a dummy atom
that is linked to the ligand atom closest to the center of
mass (COM) of the ligand by a spring with a stiffness k. Then
the force experienced by the ligand is F=k(Ax — vt), where v
is the pulling speed and Ax is the pulled atom displacement
from the initial position. As in AFM experiment (Gibson et al.,
2007), we chose k=600kJ/(mol.nm?) and v=3nm/ns which
was used previously (Mai & Li, 2011; Suan Li & Khanh Mai,
2012; Vuong et al., 2015). This value of v is about ten orders
of magnitude larger than in the experiment, but as shown in
previous works, this choice does not influence relative bind-
ing affinities, i.e., it can be used to discern strong binders
from weak ones.


https://doi.org/10.1080/07391102.2022.2114941
https://doi.org/10.1080/07391102.2022.2114941
https://doi.org/10.1080/07391102.2022.2114941

4 H. L. NGUYEN ET AL.

To prevent the receptor from drifting during pulling, we
fixed the receptor Ca-atoms located at a distance greater
than the cut-off distance (1.2nm) from the nearest ligand
atom by applying a harmonic potential with a spring con-
stant of 1000 kJ/(mol.nm?). This criterion was chosen because
the interaction between pairs of atoms located farther than
this distance is small.

The minimal steric hindrance (MSH) method (Vuong et al.,
2015) was used to find the pulling direction that is the easi-
est path with the lowest rupture force F.,ax (Mai et al., 2010).
This path depends not only on the ligand but also on the
SMD trajectory.

For each complex, five independent SMD runs of 1 ns were
performed in the NPT ensemble. These runs are long enough
to completely remove the ligand from the active site. In SMD
either rupture force Frax or the non-equilibrium work Wy
can be selected as a scoring function for ranking binding affin-
ities. However, we will use the latter as it is more reliable
(Vuong et al,, 2015). Wy, is calculated as follows

Xmax s Tmax N E)
Wpu|| = J F. dx = J F—dt
0 0 dt

NSYE
~ Zf (Fi +Fp)

> (Xit1 — Xi)

i=1
where F; and x; are the force and ligand displacement at
SMD step i, respectively.

2.6. Umbrella sampling

Since the pulling work obtained with SMD at fast pulling can
only be used to characterize the relative binding affinity, the
absolute binding free energy AG should be estimated by
other methods. In principle, AG can be calculated by comb-
ing SMD and the Jarzynski's equality (Hummer & Szabo,
2001; Jarzynski 1997) but this approach is impractical since a
huge number of SMD runs are required (Park & Schulten,
2004). Therefore, umbrella sampling (US) (Torrie & Valleau,
1977) was used as it is one of the best MD-based methods
for evaluating AG. Another reason for using US is that this
method was successful in predicting the binding affinity of
Remdesivir for SARS-CoV-2, as shown in our previous work
(Nguyen et al., 2020).

One of the central issues of US is the suitable choice of
the reaction coordinate for calculating the potential of mean
force (PMF). Since the pulling was along the z-direction, the
z coordinate of the ligand COM was chosen as the reaction
coordinate for US (Figure 3). Because in the MSH scheme
(Vuong et al.,, 2015) the pulling direction depends on the
SMD trajectory, the pulling path of the trajectory is that it
has a rupture force closest to the mean value of F.. Z=0
corresponds to the initial position of the ligand in the SMD
simulation, while the maximum distance z=2.8nm corre-
sponds to the end of the simulation. To perform US simula-
tions, this distance was divided into windows. For
0<z<0.8nm (blue part in Figure 3), where the receptor-lig-
and interaction is strong the width of the windows was set
at 0.05nm, and for 0.8 nm < z<2.8nm (red part in Figure 4)

Figure 3. Setup for umbrella sampling with the reaction coordinate z. The red
ball refers to the ligand in the binding site that correspond to z=0. Windows
in the blue part of 0.8nm have a width of 0.05nm, while for the red part of
2nm, a width of 0.1 nm was chosen.

the width of the windows was 0.1 nm. Thus, in total there
are 0.8/0.05 + 2/0.1 =36 windows.

To not allow the ligand go far away from the window, we
applied the harmonic potential

1
Vi= Ek(z - z,')2
where k = ks = 600 kJ/mol/nm?, z is the center of window i.
For each window, a 100 ns conventional MD simulation was
carried out at 300K and 1 bar.

Gmx WHAM (weight histogram analysis method) tool
from GROMACS package was used for data analysis, and the
error was calculated using the bootstrap method (Hub et al.,
2010; Kumar et al., 1992).

2.7. Measures used in data analysis

The backbone root mean square deviation (RMSD) was used
to measure the deviation of structure of the receptor from
its initial configuration. A hydrogen bond (HB) was formed
provided the distance between donor D and acceptor A is
less than 3.5 A, the H-A distance is less than 2.7 A and the D-
H-A angle is greater than 135 degrees. A non-bonded con-
tact between the ligand and the receptor residue is formed
if the distance between the ligand COM and COM of the
side chain is less than 0.65 nm.

3. Results and discussions

3.1. Screening of drug-like compounds using
Lipinski’s rule

For the PubChem database applying Lipinski's rule (Lipinski,
et al. 1997) reduced the number of ligands from 103 million
to 16,140 (Figure 2). In the case of anti-HIV database, out of
42,390 compounds, 34,828 compounds are obtained. The



Figure 4. Binding positions of 6 compounds from the anti-HIV database
(upper) and 19 compounds from the PubChem database (lower) with the bind-
ing energy below -10.8 kcal/mol. Results were obtained by docking simulation.

binding affinity of these drug-like compounds will be studied
using the docking method in the next step.

3.2. Docking results

The Autodock Vina package was utilized to dock all com-
pounds to the NSP16-NSP10 binding site. Binding energy dis-
tributions of compounds from anti-HIV and PubChem
database are shown in Figure S1 in supplementary material.
For the anti-HIV database, binding energies vary from -1.2 to
-11.7 kcal/mol, while for the PubChem database, this range is
shifted to [-1.25, -12.0] kcal/mol. For both databases, the
most populated energy is from -8.5 to —6.5 kcal/mol.

Restricting to compounds that have the docking energy
less or equal -10.8kcal/mol, 6 and 19 compounds are
obtained from the anti-HIV and PubChem databases, respect-
ively. We choose the cutoff of —10.8 kcal/mol because it guar-
antees an IC50 in the nM range (from the equation AG =
RTIn(IC50), it follows that AG =-10.8 kcal/mol corresponds an
IC50 of about 10 nM).

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS . 5

Three-dimensional structures and docking energies of the
selected compounds are presented in supplementary material
Table S2. The difference in their docking energies in both data-
bases is insignificant. The top 6 and 19 compounds are located
at the experimental binding site (Figure 4), indicating that
they are promising candidates in terms of biological activity.

As shown below by SMD simulation, which is more reli-
able than the docking method, CID 135566620 (Egock =
-10.9 kcal/mol) and CID 20636 (Eqock = -11.5kcal/mol) are
the best of PubChem and anti-HIV databases, respectively.
Therefore, these two compounds are considered in more
detail as top leads for NSP16-NSP10. CID 135566620 forms
only 1 hydrogen bond with 6W4H (supplementary material
Figure S2), while CID 20636 forms 10 hydrogen bonds (sup-
plementary material Figure S3).

CID 135566620 forms 12 non-bonded contacts with residues
Gly71, Gly73, Ser74, Leu100, Asp114, Asp130, Met131, Tyr132,
Thr136, Lys146, Gly148, and Phe149 of NSP16 (supplementary
material Figure S2). CID 20636 has 8 non-bonded contacts with
residues Ser98, Leu100, Asp99, Met131, Phe149, Pro134, Cys115,
and Asp114 of NSP16 (supplementary material Figure S3). Thus,
residues Leu100, Asp114, Met131, and Phe149 of NSP16 form
non-bonded contact with both leads. These results also show
that they have different interaction modes with NSP16-NSP10,
because CID 20636 favours hydrogen bonding while CID
135566620 prefers non-bonded contacts. The experiment
(Rosas-Lemus et al., 2020) showed that SAM binds to NSP16 at
residues Asn43, Tyrd7, Gly73, Gly81, Asp99, Leu100, Asn101,
Asp114, Cys115, Asp130, Phe149 (Rosas-Lemus et al., 2020),
indicating that, as mentioned above, these two compounds
have the same binding site as SAM.

3.3. SMD results

We conducted SMD simulations for the top 6 and 19 com-
pounds from anti-HIV and PubChem databases. Force and
works profiles obtained for ID 135566620 (PubChem) and ID
20636 (anti-HIV) are shown in supplementary material Figure
S4. Above the displacement of 2.5nm the pulling work
becomes saturated. Therefore, we defined Wpull as work at
the end of a simulation.

The results obtained for F,,x and W, averaged over five
independent runs are presented in Table 1. The best ligands
CID 135566620 and CID 20636 have similar pulling work of
87.0+2.2 and 83.8 £ 2.5 kcal/mol. This is also true for the rup-
ture force F.. Note that in terms of docking energy, CID
20636 is second in the anti-HIV database (Table 1), while CID
135566620 is 11th in the PubChem database, which may be
due to the fact that the top 19 compounds in this database
have approximately the same docking energy.

Weun of the weakest ligands of the two databases is
29.9+2.3 (CID 361242) and 27.2+ 1.3 kcal/mol (CID 134812662)
(Table 1). Although the difference between the docking ener-
gies of the best and worst ligands in these databases is negli-
gible, the difference in pulling works is notable, suggesting that
the docking method is less sensitive than SMD.

The pulling work of the second-ranked compound in the
anti-HIV database (59.7 + 3.8 kcal/mol) is equivalent only to
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Table 1. SMD results for the top compounds identified by docking simulation.

Database rank ID Work (kcal/mol) Frmax (PN)

Anti-HIV activity 1 20636 83.8+2.5 867.2+22.1
2 632036 59.7+3.8 599.0£31.7
3 5268 40.6+£2.5 398.9+28.0
4 633240 39.1+3.7 408.1+23.9
5 682768 340+2.1 388.1+£31.1
6 361242 299+23 324.8+20.6

PubChem 1 135566620 87.0+£2.2 844.7 £55.1
2 58540191 71.6+1.8 691.4+53.7
3 57842673 69.2+4.4 719.9+55.4
4 135566329 64.1+4.9 612.9+49.2
5 6539952 60.7 4.3 598.8 +25.5
6 71009649 559+3.0 555.3+55.2
7 58829329 544+29 581.4+743
8 131801415 523+27 481.8+22.5
9 66604359 49.7+25 5448 +33.2
10 71296047 477+28 485.4+49.3
11 71296046 473+£19 488.8+67.9
12 134812663 451124 473.6+35.3
13 23646856 445+56 437.9+66.7
14 117996541 442+2.7 453.9+16.5
15 134812664 36.3+2.7 97.6 +46.6
16 15991573 35717 511.5+£34.6
17 24916755 338+1.7 401.7 £52.0
18 44593854 33.6+3.6 365.8 +£60.6
19 134812662 272+13 3329+25.1

The best compounds of two databases are in bold. Results were averaged

over five trajectories.
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Figure 5. Dependence of potential of mean force (PMF) on reaction coordinate
z of two best compounds from the anti-HIV and PubChem databases. Black and
red arrows represent binding free energies. Snapshots collected in the state
with PMF under the blue arrow were used to analyze the binding mechanism
of CID 135566620.

the top 4 (64.1+4.9kcal/mol) and top 5 (60.7 +4.3 kcal/mol)
in the PubChem database (Table 1), showing that PubChem
contains more compounds with strong binding affinity with
NSP10-NSP16 than the anti-HIV database. However, this con-
clusion was drawn using the criteria we developed and may
not be valid for other cases. We will calculate the absolute
binding free energy of the best compounds CID 135566620
and CID 20636 using US.

3.4. Binding free energy from umbrella sampling: CID
135566620 is the top compound

Using US method, we obtained PMF for two best com-
pounds chosen from SMD simulations (Figure 5). From the

Block 1
Q Block 2 Block 3

0 T . : : :
o -
= |
Q
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Block 1 Block 2 Block 3 Block 4

Figure 6. (Upper) CID 135566620 is divided into four blocks. (Below) Average
interaction energy of 4 blocks with NSP16-NSP10 in the bound state. Results
were obtained using US.

PMF profiles, we obtained the binding free energy
AG=-889+0.81 and —6.73+042kcal/mol for CID
135566620 and CID 20636, respectively. Using equation
IC50 = exp(AG/(RT)) with RT=0.597 kcal/mol at 300K and
IC50 measured in M, we obtained 1C50~0.34uM and
12.7 uM for top leads from the PubChem and anti-HIV data-
bases, respectively. We also performed US for the second
best compound CID 58540191 from the PubChem database
(Table 1) and obtained AG=—4.79+0.79 kcal/mol, which is
significantly higher than that of CID 135566620 and CID
20636. Therefore, US simulation was not carried out for other
compounds in Table 1.

The experiment found that IC50 of inhibitors sinefungin,
AdoHcy, and ATA for NSP16-NSP10 of the old SARS-CoV is
0.736+£0.71, 12+1.9, and 2.1+£0.2uM, respectively (Bouvet
et al, 2010), which suggest that the binding affinity of these
compounds to SARS-CoV is lower than that of the top lead
from the PubChem database for SARS-CoV-2 NSP16. Since
these compounds have been shown to be able to inhibit
SARS-CoV replication (Bouvet et al., 2010; He et al., 2004), we
expect that CID 135566620 can block the activity of SARS-
CoV-2 through binding to NSP16-NSP10. Therefore, CID
135566620 found in this work is a promising inhibitor for
SARS-CoV-2 NSP16-NSP10 as its IC50 is in the sub-pM range.
Note that this compound binds to NSP16-NSP10 more
strongly than SAM, which has the experimental value of the
dissociation constant Kd of 37 uM (Viswanathan et al., 2020).
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Figure 7. (Left) Non-bonded interaction energy of the residues of NSP10-NSP16 and CID 135566620. The NSP10 residue index is from 300 to 415, NSP16 is from 1
to 299. Shown are residues that have a non-bonded energy less than or equal to -2.5 kcal/mol. (Right) Schematic of residues presented in the left part with non-

bonded energy shown below the label. Results were obtained by using US.

3.5. Binding mechanism of CID 135566620: vdW/
interaction is more important than the electrostatic
interaction

Since CID 135566620 is the top lead, we examined its binding
mechanism with NSP16-NSP10 in detail using data obtained from
US (SMD data were not considered as they were obtained out of
equilibrium). We adopted the same residue numbering as in
Krafcikova et al. (2020). To study the receptor-ligand interaction in
the bound state we used the configurations obtained in US tra-
jectories in the region below the blue arrow in Figure 5. The elec-
trostatic and vdW interaction energies between NSP16-NSP10
and CID 135566620 are —33.39+0.19 and —40.59 +0.90 kcal/mol,
respectively, indicating that the vdW interaction is more import-
ant than the electrostatic interaction.

To understand the role of different groups of atoms, we
divided the ligand into 4 blocks: block 1-1H-benzo[dlimida-
zole, block 2-1H-indazole, block 3-1H-pyrazole and block 4-N-
(3-fluorophenyl) acetamide (Figure 6). The total interaction
energy (vdW plus electrostatic) of the blocks is -24.15,
-17.48, -13.26, and -19.07 kcal/mol, respectively (Figure 6),
which means that block 1 makes the greatest contribution to
the stability of the complex. For block 2, the vdW interaction
prevails, while for blocks 1 and 3 the opposite takes place.
For block 4 two types of interaction are compatible.

Residues Asp99, Leu100, Asp114, Cys115, Met131, Tyr132,
Gly148, Phe149, Lys170 of NSP16 have the strong non-
bonded interaction with the ligand (Figure 7). Among them,
Asp114 and Asp99 of NSP16 are the most important as they
have the interaction energy of -10.9 and -9.7 kcal/mol.

Met131 and Lys170 do not form a hydrogen bond with
CID 135566620, unlike other residues (supporting material
Figure S5). Asp99, Asp114, Cys115, and Tyr132 have signifi-
cant population of HBs in excess of 10%, suggesting that
CID135566620 interacts with NSP16-NSP10 primarily through
non-bonded interaction and hydrogen bonding.

4. Conclusions

Using the multi-step screening procedure including Lipinski’s
rule, docking, SMD and umbrella sampling, we identified CID

135566620 from the PubChem database as the most promis-
ing compound to inhibit NSP16-NSP10 activity. Its binding
free energy is -8.89kcal/mol, which corresponds to
IC50~ 0.34 uM. We have provided mechanistic insights into
the binding mechanism of the lop lead, showing that both
electrostatic and vdW interactions contribute, but the role of
the vdW interaction is more significant. In addition, 1TH-ben-
zo[d]imidazole group (block 1) of CID 135566620, which has
the lowest interaction energy with NSP16-NSP10, plays a cru-
cial role in the stability of the complex.

It can be expected that in the presence of CID
135566620, SARS-COV-2 replication slows down. Therefore,
CID 13556 is recommended for further in vitro and
in vivo studies.
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